Getting the Evolution of the Statistics of a Result
This is an example of a run(scenario) script that loads DEM dataset and calculates for result the values of a list of statistical parameters for each timestep in the datase. The data of temporal evolution of the statistical parameters is saved into the scenario as graph (raw data is also saved into a CSV file) and the graph is exported into a interactive HTML file.
'''This scripts loads the DEM dataset of a scenario. For a given result, it computes the statistical parameters
over the particles' mesh for each timestep in the dataset. A graph with the data is saved into the scenario
and into a CSV file, and the graph is exported into a HTML file'''
import iota
def run(scenario):
## Settings for getting statistics ##
mesh_name = 'particles' #Name of the mesh that contains the result
res_name = 'Velocity' #Name of the result
res_component = 3 #Component of the result
res_analysis = 'none' #Name of the analysis of the result
stats_params = ['min','max','mean','median','stdev','cov'] #Stats parameters to be calculated
########################################
#### Settings for graph saving ######
Name_graph = 'Statistics {} for {}'.format(res_name,mesh_name) #Name for the graph
Title_graph = 'Statistics {} for {}'.format(res_name,mesh_name) #Title to shown in the graph
xtitle = 'time (s)' #Title for x-axis
ytitle = 'Velocity Magnitude [m/s]' #Tile for y-axis
legend = stats_params #Name of the traces for the graph legend
graph_file = '{}/graphs/{}'.format(scenario.directory,Name_graph) #Output name and path for exporting graph
########################################
dem_dataset = scenario.get_dem_dataset() #Get the coarse-graining dataset of the scenario
dem_data = dem_dataset.data() #Load the data of the coarse-graining dataset
x_data , y_data = dem_data.statistics_evolution(mesh=mesh_name, result=res_name,
analysis=res_analysis, component=res_component, data=stats_params) #Get evolution statistics
graph = scenario.add_graph(name=Name_graph, title=Title_graph, xdata=x_data, ydata=y_data,
xtitle=xtitle, ytitle=ytitle, legend=legend) #Save the graph data to database (including raw data to csv file)
graph.export_html(graph_file) #Export the graph into html format