Calculating a KPI and Exporting into a Graph
This is an example of a run(scenario)
script that loads coarse-graining (cg) dataset and based on two results computes the value of KPI for each timestep and creates a graph in the scenario with the temporal evolution of the KPI. The graph is saved into the scenario, the raw data into a csv file and the graphe is exported into a interactive HTML file.
'''This scripts loads the cg_dataset of a scenario. For each timestep in the dataset, it computes a KPI value
that is equal to the average magnitude of the velocity of the regions with Solid Fraction > 0.2. A graph is created
with the temporal evolution of the KPI and data saved into the scenario and a CSV file, and the graph exported into a HTML file'''
import iota
def run(scenario):
## Settings for the results ##
mesh_name = 'Simulation_Domain' #Name of the mesh that contains the result
res1_name = 'Solid Fraction' #Name of the result 1 to operate with
res1_analysis = 'none' #Name of the analysis of the res1
res1_threshold = 0.2 #Threshold value of result res1
res2_name = 'Velocity' #Name of the result 2 to operate with
res2_analysis = 'none' #Name of the analysis of the res2
########################################
#### Settings for graph saving ######
Name_graph = 'Mean VeloMag(solidFraction larger 0.2)' #Name for the graph for the database
Title_graph = 'Mean Velocity Magnitude for SolidFraction > 0.2' #Title to shown in the graph
xtitle = 'Time (s)' #Title for x-axis
ytitle = 'KPI Mean Velocity [m/s]' #Tile for y-axis
legend = ['Mean Velocity'] #Name for the graph legend
graph_file = '{}/graphs/{}'.format(scenario.directory,Name_graph) #Output name and path for exporting graph
x_data = [] #To store the x-data
y_data = [] #To store the y-data
########################################
cg_dataset = scenario.get_cg_dataset() #Get the coarse-graining dataset of the scenario
cg_data = cg.data() #Load the data of the coarse-graining dataset
ListOfTimesteps = cg_data.timesteps() #Get the number of timesteps of the dataset
for cont, ts in enumerate(ListOfTimesteps): #For each step in the dataset
res1_values = cg_data.get_result(cont, mesh_name, res1_name, res1_analysis) #Get the values of the Solid Fraction
res2_values = cg_data.get_result(cont, mesh_name, res2_name, res2_analysis) #Get the values of the Velocity [VX,VY,VZ]
res2_magnitude = res2_values.modulus() #Compute magnitude of the velocity
KPI_current = res2_magnitude[res1_values > res1_threshold].mean() #Compute mean of velocity magnitude values if solid fraction > threshold
y_data.append(KPI_current) #Append the value of KPI to the y-values
x_data.append(float(ts)) #Append the time value of the step to the x-values
graph = scenario.add_graph(name=Name_graph, title=Title_graph, xdata=x_data, ydata=[y_data],
xtitle=xtitle, ytitle=ytitle, legend=legend) #Save the graph data to database (including raw data to csv file)
graph.export_html(graph_file) #Export the graph into html format
Last updated
Was this helpful?